【导语】军队文职考试中,专业科目是考试的一项必考内容,红师军队文职考试网为考生们汇总了军队文职人员考试专业科目考试内容相关的复习资料,以供大家参考学习,助力考生备考军队文职考试。
【矩阵的特征值和特征向量】
主要测查应试者对矩阵的特征值理论、相似矩阵、实对称矩阵对角化的掌握程度。 要求应试者理解矩阵的特征值和特征向量、相似矩阵的概念,掌握矩阵特征值的性质,矩阵的特征值和特征向量的计算、矩阵可相似对角化的充分必要条件、将矩阵化为相似对角 矩阵的方法、实对称矩阵的特征值和特征向量的性质等理论。
本章内容主要包括矩阵的特征值和特征向量的概念与性质、相似变换、相似矩阵的概念 及性质、矩阵可相似对角化的充分必要条件及相似对角矩阵、实对称矩阵的特征值和特征向 量及其相似对角矩阵。
第一节 特征值与特征向量
一、特征值与特征向量的概念
矩阵的特征值、特征向量;特征多项式;特征方程。
二、特征值与特征向量的性质和计算
特征值和特征向量的性质;特征值和特征向量的计算;矩阵的迹;矩阵的特征值与矩阵的关系;相异特征值对应的特征向量。
三、相似矩阵的概念和性质
相似矩阵;相似变换;相似矩阵的性质;相似矩阵的特征值和迹。
第二节 矩阵的相似对角化
一、相似对角化的条件和方法
矩阵的对角化;n 阶矩阵可对角化的充要条件;n 阶矩阵可对角化的充分条件;n 阶矩阵相似对角化的步骤。
二、可对角化矩阵的多项式
对角矩阵的幂;可对角化矩阵的多项式。
第三节 实对称矩阵的对角化
一、实对称矩阵的特征值与特征向量
实对称矩阵的特征值为实数;实对称矩阵中相异特征值对应的特征向量是正交的。
二、实对称矩阵的对角化
实对称矩阵可相似正交对角化;实对称矩阵相似正交对角化的步骤。
更多考试信息请点击查看:军队文职考试网,了解军队文职招聘信息、军队文职报名时间和军队文职职位表等内容,为军队文职备考做好充分准备。